
Toward Automated Schema-Directed Code Revision

Raquel Oliveira
Inria/LIG

655 avenue de l’Europe,
38334 Saint Ismier, France

raraujo.oliveira@gmail.com

Pierre Genevès
CNRS and Inria/LIG

655 avenue de l’Europe,
38334 Saint Ismier, France
pierre.geneves@inria.fr

Nabil Layaïda
Inria/LIG

655 avenue de l’Europe,
38334 Saint Ismier, France
nabil.layaida@inria.fr

ABSTRACT
Updating XQuery programs in accordance with a change of
the input XML schema is known to be a time-consuming and
error-prone task. We propose an automatic method aimed
at helping developers realign the XQuery program with the
new schema. First, we introduce a taxonomy of possible
problems induced by a schema change. This allows to dif-
ferentiate problems according to their severity levels, e.g.
errors that require code revision, and semantic changes that
should be brought to the developer’s attention. Second, we
provide the necessary algorithms to detect such problems us-
ing a solver that checks satisfiability of XPath expressions.

Categories and Subject Descriptors
H.2.3 [Database Management]: Languages—Query lan-
guages; D.2.4 [Software Engineering]: Software/Program
Verification—Validation

Keywords
XML, Schemas, XQuery, Schema evolution

1. INTRODUCTION
In document management systems, documents usually en-

coded in XML are often rendered into output formats (e.g.
HTML, SVG, PDF) using transformations, typically writ-
ten in XSLT or XQuery.1 XML documents conform to con-
straints expressed with schemas that continuously change in
order to cope with the natural evolution of the entities they
describe. However, these changes may break transforma-
tions for documents whose structure was described by the
original schema.

A frequent scenario consists in an XQuery transforma-
tion executed over an XML document (conforming to some
schema Sin), generating an XML document that is valid
against another schema Sout. For instance, consider a schema

1It is known that XSLT can be compiled into XQuery.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DocEng’12, September 4–7, 2012, Paris, France.
Copyright 2012 ACM 978-1-4503-1116-8/12/09 ...$15.00.

describing bibliographical data for a writer (as illustrated in
Figure 1a). The schema allows zero or more books, each
book having a title of type string and a year of publication
of type integer, and some information about its sales.

Now consider that this schema Sin evolved into a newer
version S′in (as illustrated in Figure 1b), with three changes:
(I) the type of the year is now a string (II) the book is dis-
tributed at most once and (III) the city element is removed.
Figure 2 gives two document instances. Instance (a) is valid

integer

sales

name

integer

string

*

store

bib

qty

book

year +

string

string

city

title

foundation

integer

(a) Sin=bibliography data

integer

sales

name

integer

string

string

*

store

bib

qty

book

year ?

string

string

city

title

foundationx
(b) S′in=evolved schema

Figure 1: Example of a schema evolution.

against Sin, but not valid against S′in (because at most one
sale is expected in S′in). Instance (b) is allowed by S′in whereas
it was not allowed by Sin, since Sin prevented book elements
to occur without a least one sale child.

...

book

store

Brida sales

260

sales

350 store

2005

...

(a) instance valid againt Sin

2009

book

Mirage

(b) instance valid against S′in

Figure 2: Instances of documents

The XQuery transformation shown below extracts the sales
information for book structures valid against Sin. If the book
was published in 2012 and was sold in New York, it consid-
ers only ”new” stores (founded in 2010 or later). For other
cases, it considers ”old” stores too. Finally it returns the
sales only for books that were distributed at most once.

103

�
for $s in doc("bib.xml ")// book
let $y as xs:integer := xs:integer($s/year)
where

if (($s/sales/store/city = "New York")
and ($y = 2012)) then
$s/sales/store/foundation >= 2010

else
$s/sales/store/foundation >= 1960

return
<book >{$s[count(sales)<=1]/ sales}</book >
� �

In our scenario, the output document is validated against
the schema shown in Figure 3.

integer

sales

string
foundationcityname
integer

?

storeqty

string

+

book

Figure 3: Output schema Sout

Contribution
Our goal is to propose a framework to detect impacts of
schema changes on transformations automatically.

2. TAXONOMY OF ERRORS
We now introduce a taxonomy of impacts on transfor-

mations according to various changes brought to a given
schema. The taxonomy is divided into two main groups.
The first group gathers different errors that can be detected
by a joint analysis of the transformations and the input
schemas. The second group consists in extending the anal-
ysis by taking advantage of the availability of the output
schema. Basically, the goal is to check whether the trans-
formation results would still be valid against the output
schema. The taxonomy categories are summarized in Ta-
ble 1. In our setting, the transformation analysis results
in one of the two following conclusions: either no problem
was detected among the ones we cover in the taxonomy, or a
problem is detected, in which case it is properly categorized.

Schema considered Acronym Category

Input Schemas

TYPECAST Type casting
DEADCODE Dead code
REDUNDCODE Redundant code
INVQUERY Invalid query
DIFFRES Different results

Output Schema INVRES Invalid results

Table 1: Summary of the taxonomy

We detail each category in the following subsections.

2.1 Analysis w.r.t. input schema versions
Type casting problems. Type casting problems can

occur in XQuery clauses that bind variables (e.g. for and
let clauses). Specifically, a type casting error is detected
whenever the schema change results in an assignment of an
element with type t1 to a variable with type t2 6= t1. For

instance, in our motivating example, this problem occurs in
the binding between the XPath expression //book/year and
the integer variable $y, since the year element is of type
string in the new schema S′in.

Dead code. A given code portion is dead whenever it is
never reached by any execution of the program, for example,
the else part of a condition when it is known that the if part
always evaluates to true (or the then part whenever the if
part is found unsatisfiable). In a XQuery program, there
are several places where a dead code can potentially occur,
as studied in [3]. We detect errors reported in [3] as well
as other categories not covered in [3]. In the motivating
example, dead code can be detected in the if expression.
Once we detected that this condition always return an empty
set (because the city element was removed from the schema),
the then part will never be executed.

Redundant code. A code portion is redundant if its ex-
ecution does not affect the result of the program. It can be
safely removed from the program, like a condition that is al-
ways evaluated to true. The relevance of the detection of this
problem resides on the possibility to propose query rewrit-
ing, with the purpose of optimization and/or size reduction
of a program. In our motivating example, the XPath qual-
ifier in the return clause becomes redundant following the
schema change. In the new schema, the sales element can
now occur at most once in the document. As a result, the
condition of the qualifier is always true under this schema,
making it removable.

Invalid query. We identify as invalid the XPath expres-
sions that are unsatisfiable under the considered schema.
Using the satisfiability algorithm proposed in [5], we check
statically (at compile time) whether an XPath is satisfiable
against schema S′in. Otherwise, we deduce that the XPath
(and subsequently the expression that uses it) is invalid. The
XPath used in the if condition of the motivating example is
invalid. It is never satisfied given that the city element was
removed from the schema.

Different query results. In this category, we are in-
terested in highlighting to the user at compile time the fact
that, due to the schema evolution, the result of the query
will change unexpectedly. The query will not raise type cast-
ing problems, does not contain neither dead nor redundant
code, but it will select unexpectedly more (or less) nodes
in the input XML document, due to, for example, insertion
(or removal) of elements in the XML schema, or changes in
the constraints of the elements, or in its content model. In
our motivating example, once we remove the city element
from the schema, the content model of the store element
changes (it is somehow “decreased”). Since store is part of
the content model of the element that will be returned, we
can conclude that the result of this XQuery is affected by
the schema change (knowing that the return clause creates
a document consisting of the selected element of the XPath
and its content model).

2.2 Analysis w.r.t. the output schema
Invalid query results. When the output schema is

available (Sout), we can go further and detect at compile time
that the changes in the input schema will produce an invalid
document with respect to the output schema Sout. First, we
review the validation process of the output document before
considering the input schema changes. The XQuery of our
example returns the sales information of books which were

104

sold at most once. This XQuery is launched on instances of
the schema Sin of Figure 1a. This schema allows instances
of books with at least one sale (< + > constraint at the
element sales). When the transformation is executed, only
books with exactly one sale will be returned, which is a
valid result considering Sout (< + > constraint at the ele-
ment sales). Now consider the input schema change (II):
the book will be distributed at most once (sales?). Now
this schema allows instances of books with no sale. When
we run the XQuery transformation, the condition of the re-
turn clause will also allow such kind of documents. When
considering the output schema of Figure 3 we observe that
each book should have at least one sale (< + > constraint
at the element sales). So, the XQuery transformation of our
example may generate invalid results against Sout.

3. ERROR DETECTION
We present the analysis technique for detecting errors for

each taxonomy category. For this purpose, we develop in-
ference rules as a detection mechanism for a fragment of
XQuery defined below.

Considered XQuery fragment
Specifically, we consider the fragment of XQuery whose syn-
tax is defined in Table 2, that uses XPath expressions whose
syntax is described in Table 3. In these grammars, n stands
for any integer number, v for any variable’s name, tag for
any string corresponding to the name of a tag and cst for
any constant value. For FLWOR expressions, we consider
for, let, where and return clauses. The considered fragment
captures the most important features for extracting and gen-
erating information.

e ::= ()
| $v
| xpath
| $v/xpath
| e,e
| <tag> e < /tag>
| element{e}{e}
| if e then e else e
| let $v as t := e (where e)? return e
| for $v (as t)? in e (where e)? return e

t ::= xs:integer | xs:string | xs:boolean

Table 2: Syntax of XQuery Programs

xpath ::= step | xpath/xpath | xpath[qualifier]
step ::= axis::nameTest

qualifier ::= xpath | xpath op cst | count(xpath) op n
op ::= < | > | ≤ | ≥ | = | ! = | eq|ne|lt|le|gt|ge

axis ::= self | child | parent | descendant | ancestor
| following | preceding | following-sibling
| preceding-sibling

nameTest ::= tag | *

Table 3: Syntax of XPath Expressions

Inference Rules
For each category of the taxonomy, we develop a set of in-
ference rules that are applied recursively. Specifically, we

design one inference rule per construct of our XQuery frag-
ment shown on Table 2. A given rule tests for the presence
of an error by invoking logical predicates in the premises. A
logical predicate corresponds to a property involving XPath
queries, schemas and more generally constraints over XML
document trees. The truth status of these logical predicates
is evaluated using calls to an external XML reasoner such
as the one proposed in [5]. Depending on the truth status
of the properties described in the premises, the conclusion
of a rule attaches the detected error to the corresponding
XQuery subexpression. We only detail rules for cases where
an error is detected, other obvious cases are omitted.

Type casting problems. In order to detect type casting
errors in variable bindings of the for and let clauses, we use
an environment Γ′ that keeps track of the type of variable
$v. The main rule is shown in the table below.

TYPECAST

for
Sin,S

′
in,Γ,Γ′∪(t,$v) ` has different type(xpath,S′in,t)

Sin,S
′
in,Γ,Γ′ ` for $v as t in xpath return e3→ TY PECAST

This rule invokes the predicate has different type, that
checks if an element selected by an XPath is of type t in
the considered schema. This predicate formulates the prop-
erty that the type of an element returned by the XPath is
different from the one expected by the schema.

Redundant code. For checking redundant code, we in-
troduce the predicate removable qualifier. It successively re-
moves qualifiers from the XPath expression one by one and
checks for the equivalence with the original one (meaning
that such a qualifier is redundant). To check for equiva-
lence, we use the predicate non equivalence(xpath1, xpath2)
that is satisfiable iff there exists an element which is selected
by one of the XPaths and not by the other one.

REDUNDCODE

xpath
Sin,S

′
in,Γ ` removable qualifier(xpath)

Sin,S
′
in,Γ ` xpath→ REDUNDCODE

Invalid query. The rules for detecting invalid queries are
based on satisfiability tests for each XPath, directly avail-
able in any XML reasoner, that we denote here through the
predicates select and type. The rule concludes that a given
XQuery expression is invalid with respect to an input schema
iff it contains XPath expressions that are unsatisfiable in the
presence of the schema (i.e. always empty).

INVQUERY

xpath
Sin,S

′
in,Γ ` ¬select(xpath,type(S′in))

Sin,S
′
in,Γ ` xpath→ INV QUERY

Different query results. For this category, the rules
expressed in the table bellow focus on analyzing parts of
XQuery expressions that, combined with elements and doc-
ument constructors, generate content dynamically. For ex-
ample, in a < if e1 then e2 else e3 > expression, only e2

and e3 are evaluated, since they can generate new content
depending on the boolean condition. In the inference rules,
we use the predicates new regions and new contents intro-
duced in [4]. The first one returns true when an XPath
selects nodes that were already present in the old schema,
but that now appear in different regions of the document,
due to the schema changes. The second predicate returns
true when the XPath selects elements that already occurred

105

in the old schema, but whose content model has changed.
The main rules are shown in the table below.

DIFFRES

xpath
Sin,S

′
in,Γ ` new regions(xpath,Sin,S

′
in)

Sin,S
′
in,Γ ` xpath→ DIFFRES

xpath
Sin,S

′
in,Γ ` new contents(xpath,Sin,S

′
in)

Sin,S
′
in,Γ ` xpath→ DIFFRES

for
Sin,S

′
in,Γ∪($v,e1) ` e3→ DIFFRES

Sin,S
′
in,Γ ` for $v in e1 where e2 return e3→ DIFFRES

Invalid query results. To detect invalid query results,
it is necessary to statically analyze whether the document
produced by the transformation validates against the out-
put schema Sout. We know that the structure of the output
document is influenced by changes brought to input schema.
For example, assume that we launch our XQuery on some
document that follows Sin of Figure 1a. In this case, the
output document will follow the structure described by Sout

of the Figure 3.
In order to check if the generated document remains valid

against Sout whenever Sin changes, we proceed in two steps.
First, we abstract over the structure generated by the XQuery
transformation using a set of XPath expressions that de-
scribe the location of nodes created in the output document.
Those XPath expressions are collected during the applica-
tion of the inference rules. As a second step, we check
whether these XPath expressions are unsatisfiable against
the output schema (using the “select” predicate), in which
case we raise the INVQUERY error.

INVRES
xpath

Γ `xpath 7→ /selected node(xpath)

seq Γ ` e1 7→ p Γ `e2 7→ p′

Γ ` e1,e2 7→ p/following simbling::∗[p′]

tag Γ ` e 7→ p
Γ ` <tag>e</tag> 7→ /tag/p

elem Γ ` e1 7→ p Γ `e2 7→ p′

Γ ` element{e1}{e2} 7→ /p/p′

if Γ ` e2 7→ p Γ `e3 7→ p′

Γ ` if e1 then e2 else e3 7→ (p|p′)

for Γ∪($v,e1) ` e3 7→ p
Γ ` for $v in e1 where e2 return e3 7→ p

e Sout,Γ ` e 7→ p Sout,Γ ` ¬select(p,type(Sout))
Sout,Γ ` e → INV RES

We introduce the predicate selected node that takes an
XPath as argument and returns the selected node name
(for example, selected node(/a/b/c)=c). Consider the re-
turn clause of our motivating example:

return <book>{$s[count(sales)<=1]/sales}</book>

The XPath that abstracts over the generated structure for
this return clause would be: /book/sales. In the inference
rules above, the construction of an XPath p from the XQuery
expression e is denoted as e 7→ p (see table INVRES).

4. RELATED WORK
Impacts of schema evolutions have been recently investi-

gated in the literature by several authors [8, 7, 1, 2, 6, 4].

In [8] the authors address the problem of schema evolution
assuming that a mapping between schemas is provided. In
[7] the authors propose a five-level framework (called XCase)
to manage XML evolution, but they do not deal with prop-
agation of schema changes at query level. [1] is concerned
with a structural similarity measure as a step for the au-
tomatic inference of a transformation from one schema to
another. However the approach is approximate and does
not deal with XQuery. The work found in [2] addresses evo-
lution in schemas but the process is not fully automatic in
the sense that the user must indicate which queries are po-
tentially affected by schema changes. The work found in [6]
deals with revalidation of documents whenever their schema
evolves but does not deal with queries. Finally, the present
work extends our previous results on evolution restricted to
XPath expressions and schemas analysis [4]. The extension
consists in considering a transformation language such as
XQuery that can not only select nodes in input documents
but also generate output documents. In addition, we an-
alyze the impact of input schema changes over the output
generated by the transformation.

5. CONCLUSION
We highlighted various consequences that schema changes

may have on transformations. We presented a new tax-
onomy of possible problems induced by schema changes.
We proposed automated static analysis techniques to detect
each category. The analyses are presented through inference
rules that operate on a core fragment of XQuery. We believe
this is a step toward automated schema-directed code revi-
sion techniques for modern document management systems.

6. REFERENCES
[1] A. Boukottaya and C. Vanoirbeek. Schema matching

for transforming structured documents. In Proceedings
of the 2005 ACM symposium on Document engineering,
pages 101–110, 2005.

[2] C. A. Curino, H. J. Moon, and C. Zaniolo. Graceful
database schema evolution: the PRISM workbench.
Proc. VLDB Endow., 1(1):761–772, Aug. 2008.

[3] P. Genevès and N. Layäıda. Eliminating dead-code
from XQuery programs. In Proceedings of the 32nd
ACM/IEEE International Conference on Software
Engineering - Volume 2, pages 305–306, 2010.

[4] P. Genevès, N. Layäıda, and V. Quint. Impact of XML
schema evolution. ACM Transactions on Internet
Technology, 11(1):4:1–4:27, July 2011.

[5] P. Genevès, N. Layäıda, and A. Schmitt. Efficient static
analysis of XML paths and types. SIGPLAN Not.,
42(6):342–351, June 2007.

[6] G. Guerrini, M. Mesiti, and D. Rossi. Impact of XML
schema evolution on valid documents. In Proceedings of
the 7th annual ACM international workshop on Web
information and data management, pages 39–44, 2005.

[7] M. Necaský and I. Mlýnková. Five-level multi
-application schema evolution. In DATESO, pages
90–104, 2009.

[8] Y. Velegrakis, R. J. Miller, and L. Popa. Mapping
adaptation under evolving schemas. In Proceedings of
the 29th international conference on Very large data
bases - Volume 29, pages 584–595, 2003.

106

	Introduction
	Taxonomy of errors
	Analysis w.r.t. input schema versions
	Analysis w.r.t. the output schema

	Error detection
	Related work
	Conclusion
	References

